
1

Cost Optimize
NGINX Plus with
Amazon EC2 A1
August, 2019

White Paper

Index

P2. Executive Summary

P3. NGINX on AWS Architecture

P4. Testing Results

P9. Conclusion

P10. Background

P11. Appendix A

P11. Appendix B

P12. Appendix C

P12. Appendix D

P14. Appendix E

P16. References

2

Executive Summary

Amazon Web Services (AWS) introduced the Amazon EC2 A1 instance at AWS re:Invent

2018. These instances use the AWS Nitro-system and are the first instances powered by the

AWS Graviton Processor featuring 64-bit Arm Neoverse cores and custom silicon designed

by AWS.

Amazon EC2 A1 instances deliver up to 45% cost savings for Arm-native and modern

scale-out applications such as web servers, containerized microservices, caching fleets, and

distributed data stores that are supported by the extensive Arm ecosystem. These instances

also appeal to developers, enthusiasts, and educators across the Arm community as they

provide quick, easy and cost effective access to the Arm architecture using familiar EC2

cloud interfaces.

NGINX is one of the most popular scale-out web applications, and is well suited to running on

Amazon EC2 A1 instances. NGINX Plus is based on NGINX Open Source, which is the #1 web

server at the world’s busiest 1,000, 10,000, and 100,000 websites, according to W3Techs.

The commercially supported version NGINX Plus for Arm is readily available on the AWS

Marketplace, including a free trial, making it very easy to get up and running on A1 instances.

In this document, we showcase the cost and performance benefits of deploying NGINX Plus

application delivery and web services on Amazon EC2 A1 instances. In our performance

testing, we focused on NGINX configured as a reverse proxy server and as an API gateway.

The host infrastructure is configured in a redundant manner that replicates a typical

production deployment, and then load tested across a range of total requests per second

(RPS) values using a network traffic generator.

Based on our analysis, when configured as a reverse proxy or an API gateway, and serving up

to 25,000 requests per second, the Amazon EC2 A1 instances deliver up to 40% cost savings

versus other EC2 configurations. This is great news for cost-concious NGINX customers

requiring up to 25,000 RPS from a redundant, scale-out configuration reflecting a very

common real world NGINX customer scenario.

The following table highlights NGINX reverse proxy price/performance for a 3-node

deployment across multiple EC2 instance types and RPS values. The maximum node

utilization was capped at 66% to accommodate a potential node failure scenario.

For instance, to achieve up to 25,000 RPS, the cost for three EC2 a1.large instances is

$0.153/hour compared to $0.255/hour for three EC2 c5.large instances, thereby providing

cost savings of 40%.

https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/
https://w3techs.com/technologies/cross/web_server/ranking
https://aws.amazon.com/marketplace/pp/B07QD34VKD?qid=1554836374940&sr=0-10&ref_=brs_res_product_title
https://aws.amazon.com/marketplace/pp/B07QD34VKD?qid=1554836374940&sr=0-10&ref_=brs_res_product_title

3

Similarly, to serve 50,000 total RPS, three (3) a1.xlarge instances with $/hour value

of $0.306 is required compared to three (3) c5.large instances with $/hour value of $0.255.

At this performance point c5 instances are upto 15% more cost effective. For details,

see Testing Results.

While in our results, we provide cost-performance benefits by showcasing RPS values served

by various instance sizes, in real world deployments, customers can further right size their

instances by selecting different instance sizes within a given instance family. This will provide

more performance granularity and varying benefits based on the specific deployment.

Also, these cost comparisons are based on on-demand pricing for these instances and results

will vary for Reserved and Spot instances.

NGINX on AWS Architecture

NGINX Plus in conjunction with the Elastic Load Balancing (ELB) offerings from AWS allow

you to build a scalable and resilient application stack. While the AWS Application Load

Balancer (ALB) provides some layer 7 load balancing support, we chose to use the NGINX

Plus load-balancer to allow for more complex routing requirements. Combining NGINX Plus

with an AWS Network Load Balancer (NLB) allows you to leverage high availability and scale

NGINX horizontally. Combined with the powerful AWS autoscaling group integrations you

can autoscale your NGINX load balancing tier, and you can easily autoscale your backend

applications utilizing the NGINX asg-sync package. When combined with the AWS Route53

Global Server Load Balancing (GSLB) solution, you can build a geographically diverse, highly

available environment. You can easily build an example of this architecture by using the

NGINX Plus on AWS quickstart guide.

Redundancy: 3 Max util: 66%

Total rps
RPS/

instance
a1 - $/hr c5 - $/hr m5 - $/hr m5a -$/hr

1,000 333 0.153 0.255 0.288 0.258

2,000 667 0.153 0.255 0.288 0.258

4,000 1,333 0.153 0.255 0.288 0.258

10,000 3,333 0.153 0.255 0.288 0.258

15,000 5,000 0.153 0.255 0.288 0.258

20,000 6,667 0.153 0.255 0.288 0.258

25,000 8,333 0.153 0.288 0.288 0.2505

35,000 11,667 0.306 0.255 0.288 0.258

50,000 16,667 0.306 0.255 0.288 0.516

75,000 25,000 0.612 0.51 0.576 0.516

100,000 33,333 0.612 0.51 0.576 1.032

125,000 41,667 0.612 0.51 0.576 1.032

175,000 58,333 1.224 1.02 1.152 1.032

200,000 66,667 1.224 1.02 1.152 2.064

Table 1: NGINX Reverse Proxy Price and Performance per Instance type

https://aws.amazon.com/quickstart/architecture/nginx-plus/

4

Testing Results

This section provides test setup details and performance results for the NGINX Plus reverse

proxy and API gateway features. The performance of these two functions often determine the

overall performance of many of the NGINX deployments using AWS today.

Test Setup

The test setup is designed to measure the max HTTPS Requests Per Second (RPS) of a

Reverse Proxy (RP) or an API Gateway (APIGW). In the figure below, the client makes

requests for a resource to an instance that is capable of testing both RP & APIGW use cases.

In addition, there is an upstream web server that will serve static files.

For HTTP/HTTPS traffic generation, an open source application wrk2 is used which is built

as a modern HTTP benchmarking tool capable of generating significant load for a single

multi-core CPU. It combines a multithreaded design with scalable event notification systems,

allowing the user to create scripts to generate requests, process the responses, and report

the test outcomes very easily.

Figure 1: Arcitecture Diagram: NGINX Plus with AWS Network load balancer (NLB) and auto-scale group

https://github.com/giltene/wrk2

5

Following describes the test workflow:

1. Client sends requests for static files to the RP/APIGW

2. Upon receipt, RP/APIGW checks if the requested Uniform Resource Identifier (URI)
 should be rewritten

3. If the URI is not rewritten, this is the RP case, if the URI is rewritten, this is the APIGW case

4. After the URI check and potential rewrite, the request is sent to the upstream server instance

5. The upstream server will respond to the RP/APIGW with the requested resource
 (static file in our case)

6. The RP/APIGW will send the resource back to the client where the request originated.
 The client running wrk2 produces the RPS metric.

As shown in the above diagram, a single instance of wrk2 was used to generate traffic

required to stress test the two common NGINX use cases of reverse proxy and API gateway

on the various EC2 instances. These are single instances tested with an NGINX web server

instance configured in the back end to respond to requests generated by the wrk traffic

generator. This ensures that a full bi-directional traffic flow is being tested for the respective

NGINX features. By stress testing these single instances, we’re able to achieve the maximum

requests per second (RPS) that each instance can support before performance degradation

occurs.

The following table shows the various instances tested:

Find more information on AWS EC2 instances here.

AWS Instance Sizes Number of vCPUs

a1

large
xlarge

2xlarge
4xlarge

2
4
8

16

m5a

large
xlarge

2xlarge
4xlarge

2
4
8

16

c5

large
xlarge

2xlarge
4xlarge

2
4
8

16

m5

large
xlarge

2xlarge
4xlarge

2
4
8

16

https://aws.amazon.com/ec2/instance-types/

6

Use Case #1: NGINX Plus reverse proxy

A proxy server is a go between or intermediary server that forwards requests for content

from multiple clients to different servers across the Internet. A reverse proxy server is a type

of proxy server that typically sits behind the firewall in a private network and directs client

requests to the appropriate back end server. A reverse proxy provides an additional level of

abstraction and control to ensure the smooth flow of network traffic between clients and

servers. Common uses for a reverse proxy server include load balancing, web acceleration

and security.

In this setup, the NGINX Plus reverse proxy server is sending HTTP requests generated by

the wrk2 traffic generator to the back end NGINX web server and returning the response

back to the client that requested it. The HTTP request in our tests were crafted to return a

“404 page not found message” as a proxy for a small-size payload messages returned to the

requester.

In our setup, a single AWS EC2 instance is stress tested with NGINX reverse proxy

functionality to achieve maximum RPS per instance using the load generator which self-

throttles based on increased latency values for the responses.

In real world, these instances are configured with N+1 configuration where N stands for the

number of instances required to meet the performance requirements, typically a minimum of

2 to achieve high availability. In addition, there is at least an instance reserved to be available

in an event of an instance failure. We configured three (3) nodes to achieve N+1 configuration

with each node operating at a maximum of 66% utilization from it’s maximum response RPS

values tested in order to handle an instance failure by spreading the load without causing any

disruption in service continuity to end customers.

The table below shows the effective hourly cost of each instance type for a three (3) node

setup based on the responses per second necessary for the deployment. It also highlights the

range of RPS achieved for a three-node deployment for various EC2 instances.

For example, to achieve up to 25,000 RPS with three (3) instances operating at 66%

utilization ratios, we look at each instance’s RPS values at 66% from table TABLE 5.

Three (3) a1.large instances can deliver the performance required to achieve 25,000

RPS (10,618.74 RPS *3). Similarly, three (3) c5.large instances can achieve this level of

aggregate performance for this configuration, but at a higher cost. Based on these RPS

requirements and the $/hour values for each instance type, we are able to provide optimal

cost-performance guidance. For example, three EC2 a1.large instances cost $0.153/hour

compared to $0.255/hour for three EC2 c5.large instances.

In the table below, the green cells identify the least expensive solution that meets the

required performance. The light green, yellow and red cells cover the $/hr ranges for each

instance type to meet the required RPS values and redundancy.

7

Redundancy: 3 Max util: 66%

Total rps
RPS/

instance
a1 - $/hr c5 - $/hr m5 - $/hr m5a -$/hr

1,000 333 0.153 0.255 0.288 0.258

2,000 667 0.153 0.255 0.288 0.258

4,000 1,333 0.153 0.255 0.288 0.258

10,000 3,333 0.153 0.255 0.288 0.258

15,000 5,000 0.153 0.255 0.288 0.258

20,000 6,667 0.153 0.255 0.288 0.258

25,000 8,333 0.255 0.288 0.288 0.2505

35,000 11,667 0.306 0.255 0.288 0.258

50,000 16,667 0.306 0.255 0.288 0.516

75,000 25,000 0.612 0.51 0.576 0.516

100,000 33,333 0.612 0.51 0.576 1.032

125,000 41,667 0.612 0.51 0.576 1.032

175,000 58,333 1.224 1.02 1.152 1.032

200,000 66,667 1.224 1.02 1.152 2.064

Table 4: NGINX Reverse Proxy Price and Performance per Instance type

Table 5: Maximum Reverse Proxy RPS values per Instance type

The table 5 below shows how instance sizes and its maximum RPS and RPS values at 66%

utilization ratios achieved per instance type:

Reverse proxy

Instance vCPU maximum RPS
RPS at 66%
utilization $/hour

a1.large 2 16089 10618.74 $ 0.051

a1.xlarge
4

36157 23863.62 $ 0.102

a1.2xlarge
8

76004 50162.64 $ 0.204

a1.4xlarge 16 169037 111564.42 $ 0.408

c5.large 2 31075 20509.5 $ 0.085

c5.xlarge 4 75955 50130.3 $ 0.170

c5.2xlarge 8 188886 124664.76 $ 0.340

c5.4xlarge 16 450308 297203.28 $ 0.680

m5.large 2 33774 22290.84 $ 0.096

m5.xlarge 4 74151 48939.66 $ 0.192

m5.2xlarge 8 187147 123516.36 $ 0.384

m5.4xlarge 16 437523 288765.18 $ 0.768

m5a.large 2 25006 16503.96 $ 0.086

m5a.xlarge 4 47615 31425.9 $ 0.172

m5a.2xlarge 8 97045 64049.7 $ 0.344

m5a.4xlarge 16 227763 150323.58 $ 0.688

8

Redundancy: 3 Max util: 66%

Total rps
RPS/

instance
a1 - $/hr c5 - $/hr m5 - $/hr m5a -$/hr

1,000 333 0.153 0.255 0.288 0.258

2,000 667 0.153 0.255 0.288 0.258

4,000 1,333 0.153 0.255 0.288 0.258

10,000 3,333 0.153 0.255 0.288 0.258

15,000 5,000 0.153 0.255 0.288 0.258

20,000 6,667 0.153 0.255 0.288 0.258

25,000 8,333 0.153 0.255 0.288 0.258

35,000 11,667 0.306 0.255 0.288 0.258

50,000 16,667 0.306 0.255 0.288 0.516

75,000 25,000 0.612 0.51 0.576 0.516

100,000 33,333 0.612 0.51 0.576 1.032

125,000 41,667 0.612 1.02 1.152 1.032

150,000 50,000 1.224 1.02 1.152 1.032

175,000 58,333 1.224 1.02 1.152 2.064

200,000 66,667 1.224 1.02 1.152 2.064

Use Case #2: NGINX API Gateway

As the leading high-performance, lightweight reverse proxy and load balancer NGINX Plus

has the advanced HTTP processing capabilities needed for handling API traffic. NGINX API

gateway can address multiple use cases in an efficient, scalable manner. One advantage of

using NGINX Plus as an API gateway is that it can perform that role while simultaneously

acting as a reverse proxy, load balancer, and web server for existing HTTP traffic. If NGINX

Plus is already part of your application delivery stack then it is generally unnecessary to

deploy a separate API gateway. However, some of the default behavior expected of an API

gateway differs from that expected for browser based traffic. For that reason and for our

testing purposes, we separate the API gateway configuration.

An API gateway takes all API calls from clients, then routes them to the appropriate

microservice with request routing, composition, and protocol translation. It handles a request

by invoking multiple microservices and aggregating the results, to determine the best path for

that request. It can translate between web protocols and web unfriendly protocols that are

used internally.

The test setup is similar to the reverse proxy example, with additional application level

monitoring to make sure the request gets to the right server. The file size tested is 1kb to

mimic the most common HTTP requested file size.

The table below demonstrates how cost-effective Amazon EC2 A1 instances are when

configured as an NGINX API gateway. The performance results and cost benefits are similar

to the NGINX reverse proxy with Amazon A1 instances providing upto 40% cost-savings

compared to higher performance EC2 instances for up to 25,000 RPS when delivered using

three redundant instances.

Table 6: NGINX API Gateway Price & Performance per Instance type

9

Below is a table of the results of the API gateway testing that shows the max RPS values and

RPS values at 66% utilization ratios for each instance tested:

Conclusion

These performance results provide you with deployment guidelines for common NGINX

configurations across a variety of Amazon EC2 instances and showcases the cost benefits of

deploying Amazon EC2 A1 instances – demonstrating up to 40% cost savings for scale-out

NGINX deployments. This document also provides a framework for you to deploy additional

features and services on A1 instances. With NGINX Amazon Machine Images (AMIs) readily

available for A1 instances, you can deploy NGINX Plus on AWS EC2 A1 with ease to achieve

the best price-performance for your specific use case.

API Gateway 1kb HTTPS ECDHE-ECDSA-AES256-GCM-SHA384

Instance vCPU maximum RPS
RPS at 66%
utilization $/hour

a1.large 2 14287 9429.42 $ 0.051

a1.xlarge 4 32140 21212.4 $ 0.102

a1.2xlarge 8 63761 42082.26 $ 0.204

a1.4xlarge 16 126353 83392.98 $ 0.408

c5.large 2 25722 16976.52 $ 0.085

c5.xlarge 4 59530 39289.8 $ 0.170

c5.2xlarge 8 133562 88150.92 $ 0.340

c5.4xlarge 16 384364 253680.24 $ 0.680

m5.large 2 31041 20487.06 $ 0.096

m5.xlarge 4 56232 37113.12 $ 0.192

m5.2xlarge 8 141565 93432.9 $ 0.384

m5.4xlarge 16 366050 241593 $ 0.768

m5a.large 2 20209 13337.94 $ 0.086

m5a.xlarge 4 40456 26700.96 $ 0.172

m5a.2xlarge 8 83224 54927.84 $ 0.344

m5a.4xlarge 16 182184 120241.44 $ 0.688

Table 7: Maximum API Gateway RPS values per Instance type

10

Background

This section provides an overview of NGINX, Arm and Amazon EC2 A1 instances

NGINX

NGINX Plus is a lightweight, flexible, portable, and all-in-one software load balancer, WAF,

reverse proxy, web server, content cache, and API gateway. By replacing a number of single-

function point solutions with NGINX Plus, you can modernize and simplify your application

architecture, reducing costs without compromising performance or functionality.

Arm Neoverse

Arm technology is at the heart of a computing and connectivity revolution that is

transforming the way people live and businesses operate. Arm’s advanced, energy-efficient

processor designs have enabled intelligent computing in more than 145 billion chips and

Arm technologies now securely power products from the sensor to the smartphone and the

supercomputer. The Arm ecosystem has been very strong in markets like mobile, smart IoT

and infrastructure. From cellular base stations to routers and servers, there are more Arm

processors shipping into infrastructure than any other architecture with nearly 30%-unit

share, and growing.

To further fuel innovation in the infrastructure space, in October 2018 Arm announced a

dedicated infrastructure roadmap with Arm Neoverse-powered products enabling a diverse

set of high-performance, secure and scalable solutions required for the infrastructure

foundation in a world of trillion intelligent devices.

For more information on Arm Neoverse family of products, please visit here.

Amazon EC2 A1 Instances

Amazon EC2 A1 instances are the first EC2 instances powered by AWS Graviton Processors

that feature 64-bit Arm Neoverse cores and custom silicon designed by AWS. These

instances deliver up to 45% cost savings for scale-out and Arm-based applications such as the

web servers, containerized microservices, caching fleets, and distributed data stores that are

supported by the extensive Arm ecosystem.

For more information, please visit https://aws.amazon.com/ec2/instance-types/a1/.

https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-n1
https://aws.amazon.com/ec2/instance-types/a1/

11

Appendix A - Software versions used

Appendix B - AWS EC2 Instance
AMI Configurations

Linux Image Kernel version
Application

version
Open SSL

Arm A1
Instance

Ubuntu 18.04
(ami-01ac7d-

9c1179d7b74)
4.15.0-1028-aws

nginx/1.15.10
(nginx-plus-r18)

Openssl:
1.1.0

x86 instances
Ubuntu 18.04 (ami-

024a64a6685d05041)
 4.15.0-1039-aws

nginx/1.15.10
(nginx-plus-r18)

Openssl:
1.1.0

Load
Generator -
M4.4xlarge

Ubuntu 18.04 (ami-
024a64a6685d05041)

 4.15.0-1039-aws
wrk2

(version 4.0)
Openssl:

1.1.0

Upstream
File server -
M4.4xlarge

Ubuntu 18.04 (ami-
024a64a6685d05041)

 4.15.0-1039-aws
nginx/1.15.10

(nginx-plus-r18)
Openssl:

1.1.0

Type Size
Ubuntu 18.04

AMI
Kernel Nginx Open SSL

A1
large, xlarge,

2xlarge,
4xlarge

ami-01ac7d-
9c1179d7b74

4.15.0-1028-aws
1.15.10

(nginx-plus-r18)
1.1.0

C5
large, xlarge,

2xlarge,
4xlarge

ami-
024a64a6685d05041 4.15.0-1039-aws

1.15.10
(nginx-plus-r18)

1.1.0

M5
large, xlarge,

2xlarge,
4xlarge

ami-
024a64a6685d05041 4.15.0-1039-aws

1.15.10
(nginx-plus-r18)

1.1.0

M5a
large, xlarge,

2xlarge,
4xlarge

ami-
024a64a6685d05041 4.15.0-1039-aws

1.15.10
(nginx-plus-r18)

1.1.0

*All instances were setup in the us-east-1 (N. Virginia) region

12

Appendix C - Load Generator and
Web Server Configuration

Appendix D - NGINX Configurations

Instance
Type

Ubuntu 18.04 AMI Kernel Installed App
Open

SSL

Upstream
(File server)

M5.4xlarge
ami-

024a64a6685d05041
4.15.0-

1039-aws
1.15.10

(nginx-plus-r18)
1.1.0

Client
(Load

Generator)
M5.4xlarge

ami-
024a64a6685d05041

4.15.0-
1039-aws

Wrk2
4.0.0

1.1.0

Client and Upstream EC2 Instance Configuration

Additionally, we set net.ipv4.tcp_tw_reuse and net.core.somaxconn on the RP/APIGW and

upstream instances with the following commands:

 net.ipv4.tcp_tw_reuse - increases the reusability of connections that are waiting to be closed

 net.core.somaxconn - is set to a much larger value, in this case 32768, from the default

 128 so that more connections can be handled concurrently

Following highlights the changes made to the nginx.conf file:

 worker_rlimit_nofile is set to a large number to avoid too many open file errors

 worker_connections The number of concurrent worker connections is doubled to achieve higher

 RPS values

 access_log off Logging is disabled because it can affect performanc and achieve consistency in

 keepalive_requests increase the number of requests that can be made over a single connection to

 reduce the overhead of establishing and destroying connections

 gzip removed from the default.conf file to remove the CPIU overhead associated with compressing

 response headers

Common Top Level Default nginx.conf for RP/APIGW and Upstream

13

Following highlights default nginx.conf file:

 Sendfile, tcp_nopush, and tcp_nodelay are common optimizations for NGINX. These optimizations

 reduce context switching and improve the flow of packets through the Linux network stack.

The default.conf (stored in /etc/nginx/conf.d/) sets up a static file server for the upstream file

server and is shown below:

 Server listens on ports 443-446 to simulate load balancing

 TLS/SSL is configured to use ECDSA for authentication, ECDHE for key exchange,

 AWSGCM-256 for encryption and SHA384 for message authentication

 In the location block we configure the server to reject all HTTP methods except for the GET method

 Upstream server is configured to serve files from /usr/share/nginx/html

RP/APIGW Nginx Configurations

The default.conf for RP/APIGW which is stored in /etc/nginx/conf.d/ is shown below

Upstream default.conf

14

Following highlights the changes made to RP/APIGW default.conf:

 upstream_pri_ip_dns should be set to the private DNS/IP address of the upstream servers with

 ports 443 and 444 allowing load balancing

 keepalive reduces the overhead of establishing and destroying connections between the RP and the

 upstream server

 proxy_http_version and proxy_set_header enables the keepalive connections as referred in the

 Nginx basic tuning blog

Following highlights the RP/APIGW default.conf details:

 upstream_ssl_file_server_com represents the reverse proxy use case and establishes upstream

 server connection

 upstream_api_ssl_file_server_com represents the API Gateway use case

 location specifies various RP and APIGW URI checks with specific actions such as:

 • For /api_old/* set $upstream to api_ssl_file_server_com (APIGW) and URI gets rewritten

 • For /api_new/* set $upstream to api_ssl_file_server_com with proxy_pass directive instructing

 APIGQ to forward and load balance the request between ports 445 and 446 of the

 upstream server

 • Example URL for APIGQW use case would be https://<upstream_pri_ip_dns>/api_new/1kb

 • For reverse proxy use case, request is forwarded to the upstream labeled ssl_file_server_com

 forwarding the URL to upstream server without modification. An example URL for this would be

 https://<RP_APIGW_IP_DNS>/1kb

Appendix E - Commands
File Commands

Load Generator Commands

https://www.nginx.com/blog/tuning-nginx/

15

Reverse-Proxy Test Commands

Below is the command we used to run a max RPS test. The URL below will return a 404 error

which is useful for testing small payloads

Command line options:

 A rate of one billion RPS ensures that we are measuring max RPS

 The latency switch enables detailed information about latency during the test

 The number of threads is set to 50. This is because we originally started our testing on M5.8xlarge

 instances. M5.8xlarge instances have 32 vCPUs, so we selected a thread count that is a bit higher

 than the max vCPUs of the instance. Later, we realized we could achieve the max RPS with the

 smaller M5.4xlarge instance without changing the number of threads

 1000 connections were found to produce higher results

 The test time is 60 seconds

API Gateway Commands

For the APIGW test, use the same command as the RP test case, but with a different

URL (one that will not be rewritten). Below is an example command for testing with a 1kb

resource:

ECDSA keys and Certificate Commands

Run the following commands to create the keys and certificate. These commands will need

to be run on each instance that is running Nginx. This includes the upstream server.

The last two commands will copy the key and certificate to the location specified in the

Nginx configuration files.

Here’s an example for testing with a 1kb resource:

 <rp_apigw_ip_dns> is the private IP or DNS name of the RP/APIGW instances

that is to be tested.

Here’s an example for testing the APIGW with a very small payload (404 errors):

16

ECDSA keys and Certificate Commands

Run the following commands to create the keys and certificate. These commands will need

to be run on each instance that is running Nginx. This includes the upstream server.

The last two commands will copy the key and certificate to the location specified in the

Nginx configuration files.

Note: If you see an error that states ‘unable to write random state’, try deleting ~/.rnd.

https://aws-quickstart.s3.amazonaws.com/quickstart-nginx-plus/doc/nginx-plus-on-the-aws-

cloud.pdf

Nginx basic tuning blog

https://aws.amazon.com/ec2/pricing/

References

https://aws-quickstart.s3.amazonaws.com/quickstart-nginx-plus/doc/nginx-plus-on-the-aws-cloud.pdf
https://aws-quickstart.s3.amazonaws.com/quickstart-nginx-plus/doc/nginx-plus-on-the-aws-cloud.pdf
https://www.nginx.com/blog/tuning-nginx/
https://aws.amazon.com/ec2/pricing/

